Extreme Aerosol Events at Mesa Verde, Colorado: Implications for Air Quality Management

Author:

Gonzalez Marisa E.,Garfield Jeri G.,Corral Andrea F.,Edwards Eva-Lou,Zeider Kira,Sorooshian ArminORCID

Abstract

A significant concern for public health and visibility is airborne particulate matter, especially during extreme events. Of most relevance for health, air quality, and climate is the role of fine aerosol particles, specifically particulate matter with aerodynamic diameters less than or equal to 2.5 micrometers (PM2.5). The purpose of this study was to examine PM2.5 extreme events between 1989 and 2018 at Mesa Verde, Colorado using Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring data. Extreme events were identified as those with PM2.5 on a given day exceeding the 90th percentile value for that given month. We examine the weekly, monthly, and interannual trends in the number of extreme events at Mesa Verde, in addition to identifying the sources of the extreme events with the aid of the Navy Aerosol Analysis and Prediction (NAAPS) aerosol model. Four sources were used in the classification scheme: Asian dust, non-Asian dust, smoke, and “other”. Our results show that extreme PM2.5 events in the spring are driven mostly by the dust categories, whereas summertime events are influenced largely by smoke. The colder winter months have more influence from “other” sources that are thought to be largely anthropogenic in nature. No weekly cycle was observed for the number of events due to each source; however, interannual analysis shows that the relative amount of dust and smoke events compared to “other” events have increased in the last decade, especially smoke since 2008. The results of this work indicate that, to minimize and mitigate the effects of extreme PM2.5 events in the southwestern Colorado area, it is important to focus mainly on smoke and dust forecasting in the spring and summer months. Wintertime extreme events may be easier to regulate as they derive more from anthropogenic pollutants accumulating in shallow boundary layers in stagnant conditions.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3