A Performance Analysis of Stochastic Processes and Machine Learning Algorithms in Stock Market Prediction

Author:

Bouasabah Mohammed1ORCID

Affiliation:

1. National School of Business and Management, Ibn Tofail University, B.P. 242, Kenitra 14000, Morocco

Abstract

In this study, we compare the performance of stochastic processes, namely, the Vasicek, Cox–Ingersoll–Ross (CIR), and geometric Brownian motion (GBM) models, with that of machine learning algorithms, such as Random Forest, Support Vector Machine (SVM), and k-Nearest Neighbors (KNN), for predicting the trends of stock indices XLF (financial sector), XLK (technology sector), and XLV (healthcare sector). The results showed that stochastic processes achieved remarkable prediction performance, especially the CIR model. Additionally, this study demonstrated that the metrics of machine learning algorithms are relatively lower. However, it is important to note that stochastic processes use the actual current index value to predict tomorrow’s value, which may overestimate their performance. In contrast, machine learning algorithms offer a more flexible approach and are not as dependent on the current index value. Therefore, optimizing the hyperparameters of machine learning algorithms is crucial for further improving their performance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3