Abstract
Since China’s reform and development commenced, in the context of rapid urbanization and coordinated regional development, Chinese cities with a close geographic proximity and social ties have gradually formed an integrated city development model. As a new phenomenon in China’s urbanization process, existing research on China’s integrated cities mainly focuses on typical case studies, and most research has been limited to literature reviews and theoretical analyses. The growing application of remote sensing technology in urbanization research in recent years has provided new opportunities for the analysis of city integration. Therefore, based on multi-spectral Landsat-8 and nighttime light images (SNPP/VIIRS, Suomi National Polar-orbiting Platform/Visible Infrared Imaging Radiometer Suite), this paper selects four of the most representative integrated cities with different backgrounds in China to analyze the land-use conversion, plot light fluctuation, and light gravity center shift in the boundary zone between cities. The results show that (1) Guangfo has the highest level of integration and urban expansion is mainly concentrated in the south-central part of the boundary area; (2) Guanshen’s level of integration is second to Guangfo’s and is mainly concentrated in the west; (3) HuSu’s integration is still in the initial stage and its increase in light intensity lags behind the expansion of building land during the study period; (4) although the light intensity and building land area increased significantly during the study period in Xixian, the overall development level of Xixian still lagged behind coastal cities due to the restriction of its geographical location. Our application results expand the data sources for integrated city research and the obtained results can potentially support decision-making and planning in the process of urban development.
Funder
National Natural Science Foundation of China
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献