Full-Color Imaging System Based on the Joint Integration of a Metalens and Neural Network

Author:

Hu Shuling1,Shi Ruixue1,Wang Bin2,Wei Yuan3,Qi Binzhi1,Zhou Peng1

Affiliation:

1. School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191, China

2. Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China

3. Photonic Institute of Microelectronics, Wenzhou 396 Xingping Road, Longwan District, Wenzhou 100029, China

Abstract

Lenses have been a cornerstone of optical systems for centuries; however, they are inherently limited by the laws of physics, particularly in terms of size and weight. Because of their characteristic light weight, small size, and subwavelength modulation, metalenses have the potential to miniaturize and integrate imaging systems. However, metalenses still face the problem that chromatic aberration affects the clarity and accuracy of images. A high-quality image system based on the end-to-end joint optimization of a neural network and an achromatic metalens is demonstrated in this paper. In the multi-scale encoder–decoder network, both the phase characteristics of the metalens and the hyperparameters of the neural network are optimized to obtain high-resolution images. The average peak-signal-to-noise ratio (PSNR) and average structure similarity (SSIM) of the recovered images reach 28.53 and 0.83. This method enables full-color and high-performance imaging in the visible band. Our approach holds promise for a wide range of applications, including medical imaging, remote sensing, and consumer electronics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3