WO3 Nanoplates Decorated with Au and SnO2 Nanoparticles for Real-Time Detection of Foodborne Pathogens

Author:

Li Xueyan1,Wu Zeyi1,Song Xiangyu1,Li Denghua2ORCID,Liu Jiajia1,Zhang Jiatao134

Affiliation:

1. School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China

2. Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Beijing Institute of Technology, Beijing 100081, China

4. MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, China

Abstract

Nowadays, metal oxide semiconductor gas sensors have diverse applications ranging from human health to smart agriculture with the development of Internet of Things (IoT) technologies. However, high operating temperatures and an unsatisfactory detection capability (high sensitivity, fast response/recovery speed, etc.) hinder their integration into the IoT. Herein, a ternary heterostructure was prepared by decorating WO3 nanoplates with Au and SnO2 nanoparticles through a facial photochemical deposition method. This was employed as a sensing material for 3-hydroxy-2-butanone (3H-2B), a biomarker of Listeria monocytogenes. These Au/SnO2–WO3 nanoplate-based sensors exhibited an excellent response (Ra/Rg = 662) to 25 ppm 3H-2B, which was 24 times higher than that of pure WO3 nanoplates at 140 °C. Moreover, the 3H-2B sensor showed an ultrafast response and recovery speed to 25 ppm 3H-2B as well as high selectivity. These excellent sensing performances could be attributed to the rich Au/SnO2–WO3 active interfaces and the excellent transport of carriers in nanoplates. Furthermore, a wireless portable gas sensor equipped with the Au/SnO2–WO3 nanoplates was assembled, which was tested using 3H-2B with known concentrations to study the possibilities of real-time gas monitoring in food quality and safety.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3