Affiliation:
1. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Abstract
The reaction of glycerol with CO2 to produce glycerol carbonate was performed successfully in the presence of gold nanoparticles (AuNPs) supported by a metal–organic framework (MOF) constructed from mixed carboxylate (terephthalic acid and 1,3,5-benzenetricarboxylic acid). The most efficient were two AuNPs@MOF catalysts prepared from pre-synthesized MOF impregnated with Au3+ salt and subsequently reduced to AuNPs using H2 (catalyst 4%Au(H2)@MOF1) or reduced with NaBH4 (catalyst 4%Au@PEI-MOF1). Compared to existing catalysts, AuNPs@MOFs require simple preparation and operate under mild and sustainable conditions, i.e., a much lower temperature and the lowest CO2 overpressure ever reported, with MgCO3 having been found to be the optimal dehydrating agent. Although the yield of the process is still not competitive with previously developed systems, the most promising advantage is the highest TOF (78 h−1) ever reported for this reaction. The optimal parameters observed for AuNPs were also tested on AgNPs and CuNPs with promising results, suggesting their great potential for industrial application. The catalysts were characterized by XRD, TEM, SEM-EDS, ICP-MS, XPS, and porosity measurements, confirming that AuNPs are present in low concentration, uniformly distributed, and confined to the cavities of the MOF.