Engineering Nano-Sized Silicon Anodes with Conductive Networks toward a High Average Coulombic Efficiency of 90.2% via Plasma-Assisted Milling

Author:

Zuo Yezhan1,Xiong Xingyu1,Yang Zhenzhong1,Sang Yihui1,Zhang Haolin1,Meng Fanbo2ORCID,Hu Renzong1

Affiliation:

1. Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

2. School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China

Abstract

Si-based anode is considered one of the ideal anodes for high energy density lithium-ion batteries due to its high theoretical capacity of 4200 mAh g−1. To accelerate the commercial progress of Si material, the multi-issue of extreme volume expansion and low intrinsic electronic conductivity needs to be settled. Herein, a series of nano-sized Si particles with conductive networks are synthesized via the dielectric barrier discharge plasma (DBDP) assisted milling. The p-milling method can effectively refine the particle sizes of pristine Si without destroying its crystal structure, resulting in large Brunauer–Emmett–Teller (BET) values with more active sites for Li+ ions. Due to their unique structure and flexibility, CNTs can be uniformly distributed among the Si particles and the prepared Si electrodes exhibit better structural stability during the continuous lithiation/de-lithiation process. Moreover, the CNT network accelerates the transport of ions and electrons in the Si particles. As a result, the nano-sized Si anodes with CNTs conductive network can deliver an extremely high average initial Coulombic efficiency (ICE) reach of 90.2% with enhanced cyclic property and rate capability. The C-PMSi-50:1 anode presents 615 mAh g−1 after 100 cycles and 979 mAh g−1 under the current density of 5 A g−1. Moreover, the manufactured Si||LiNi0.8Co0.1Mn0.1O2 pouch cell maintains a high ICE of >85%. This work may supply a new insight for designing the nano-sized Si and further promoting its commercial applications.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Guangzhou Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3