Design, Implementation, and Measurement Procedure of Underwater and Water Surface Antenna for LoRa Communication

Author:

Dala AliyuORCID,Arslan Tughrul

Abstract

There is an increasing interest in water bodies, which make up more that seventy percent of our planet. It is thus imperative that the water environment should be remotely monitored. Radio frequency (RF) signals have higher bandwidth and lower latency compared to acoustic signals. However, water has high permittivity and conductivity which presents a challenge for the implementation of RF technology. In this work, we undertook a novel design, fabrication, measurement and implementation of an antenna for a sensor node with dual ability of underwater and water surface long range (LoRa) communication at 868 MHz. It was observed that the antenna’s performance deteriorated underwater without −10 dB effective bandwidth between 668 MHz and 1068 MHz. The introduction of an oil-impregnated paper buffer around the antenna resulted in an effective 400 MHz bandwidth within the same frequency span. The sensor node with the buffered antenna was able to achieve a distance of 6 m underwater and 160 m over water surface communication to a data gateway node. The sensor node without the buffered antenna was only able to achieve 80 m over water surface communication. These experimental results show the feasibility of using the LoRa 868 MHz frequency in underwater and water surface communication.

Funder

Petroleum Technology Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3