Unsupervised Remote Sensing Image Super-Resolution Guided by Visible Images

Author:

Zhang ZiliORCID,Tian YanORCID,Li JianxiangORCID,Xu YipingORCID

Abstract

Remote sensing images are widely used in many applications. However, due to being limited by the sensors, it is difficult to obtain high-resolution (HR) images from remote sensing images. In this paper, we propose a novel unsupervised cross-domain super-resolution method devoted to reconstructing a low-resolution (LR) remote sensing image guided by an unpaired HR visible natural image. Therefore, an unsupervised visible image-guided remote sensing image super-resolution network (UVRSR) is built. The network is divided into two learnable branches: a visible image-guided branch (VIG) and a remote sensing image-guided branch (RIG). As HR visible images can provide rich textures and sufficient high-frequency information, the purpose of VIG is to treat them as targets and make full use of their advantages in reconstruction. Specially, we first use a CycleGAN to drag the LR visible natural images to the remote sensing domain; then, we apply an SR network to upscale these simulated remote sensing domain LR images. However, the domain gap between SR remote sensing images and HR visible targets is massive. To enforce domain consistency, we propose a novel domain-ruled discriminator in the reconstruction. Furthermore, inspired by the zero-shot super-resolution network (ZSSR) to explore the internal information of remote sensing images, we add a remote sensing domain inner study to train the SR network in RIG. Sufficient experimental works show UVRSR can achieve superior results with state-of-the-art unpaired and remote sensing SR methods on several challenging remote sensing image datasets.

Funder

National Key R&D Program of China under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3