Effects of UAV-LiDAR and Photogrammetric Point Density on Tea Plucking Area Identification

Author:

Zhang QingfanORCID,Hu Maosheng,Zhou Yansong,Wan BoORCID,Jiang Le,Zhang Quanfa,Wang DezhiORCID

Abstract

High-cost data collection and processing are challenges for UAV LiDAR (light detection and ranging) mounted on unmanned aerial vehicles in crop monitoring. Reducing the point density can lower data collection costs and increase efficiency but may lead to a loss in mapping accuracy. It is necessary to determine the appropriate point cloud density for tea plucking area identification to maximize the cost–benefits. This study evaluated the performance of different LiDAR and photogrammetric point density data when mapping the tea plucking area in the Huashan Tea Garden, Wuhan City, China. The object-based metrics derived from UAV point clouds were used to classify tea plantations with the extreme learning machine (ELM) and random forest (RF) algorithms. The results indicated that the performance of different LiDAR point density data, from 0.25 (1%) to 25.44 pts/m2 (100%), changed obviously (overall classification accuracies: 90.65–94.39% for RF and 89.78–93.44% for ELM). For photogrammetric data, the point density was found to have little effect on the classification accuracy, with 10% of the initial point density (2.46 pts/m2), a similar accuracy level was obtained (difference of approximately 1%). LiDAR point cloud density had a significant influence on the DTM accuracy, with the RMSE for DTMs ranging from 0.060 to 2.253 m, while the photogrammetric point cloud density had a limited effect on the DTM accuracy, with the RMSE ranging from 0.256 to 0.477 m due to the high proportion of ground points in the photogrammetric point clouds. Moreover, important features for identifying the tea plucking area were summarized for the first time using a recursive feature elimination method and a novel hierarchical clustering-correlation method. The resultant architecture diagram can indicate the specific role of each feature/group in identifying the tea plucking area and could be used in other studies to prepare candidate features. This study demonstrates that low UAV point density data, such as 2.55 pts/m2 (10%), as used in this study, might be suitable for conducting finer-scale tea plucking area mapping without compromising the accuracy.

Funder

Quanfa Zhang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3