Author:
Feng Ningning,Kang Xi,Han Haoyuan,Liu Gang,Zhang Yan’e,Mei Shuli
Abstract
Weight is an important indicator of the growth and development of dairy cows. The traditional static weighing methods require considerable human and financial resources, and the existing dynamic weighing algorithms do not consider the influence of the cow motion state on the weight curve. In this paper, a dynamic weighing algorithm for cows based on a support vector machine (SVM) and empirical wavelet transform (EWT) is proposed for classification and analysis. First, the dynamic weight curve is obtained by using a weighing device placed along a cow travel corridor. Next, the data are preprocessed through valid signal acquisition, feature extraction, and normalization, and the results are divided into three active degrees during motion for low, medium, and high grade using the SVM algorithm. Finally, a mean filtering algorithm, the EWT algorithm, and a combined periodic continuation-EWT algorithm are used to obtain the dynamic weight values. Weight data were collected for 910 cows, and the experimental results displayed a classification accuracy of 98.6928%. The three algorithms were used to calculate the dynamic weight values for comparison with real values, and the average error rates were 0.1838%, 0.6724%, and 0.9462%. This method can be widely used at farms and expand the current knowledgebase regarding the dynamic weighing of cows.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献