Determination of Detection Probability and Localization Accuracy for a Guided Wave-Based Structural Health Monitoring System on a Composite Structure

Author:

Bayoumi AhmedORCID,Minten Tobias,Mueller InkaORCID

Abstract

The capabilities of detection and localization of damage in a structure, using a guided wave-based structural health monitoring (GWSHM) system, depend on the damage location and the chosen sensor array setup. This paper presents a novel approach to assess the reliability of an SHM system enabling to quantify localization accuracy. A two-step technique is developed to combine multiple paths to generate one probability of detection (POD) curve that provides information regarding the detection capability of an SHM system at a defined damage position. Moreover, a new method is presented to analyze localization accuracy. Established probability-based diagnostic imaging using a signal correlation algorithm is used to determine the damage location. The resultant output of the localization accuracy analysis is the smallest damage size at which a defined accuracy level can be reached at a determined location. The proposed methods for determination of detection probability and localization accuracy are applied to a plate-like CFRP structure with an omega stringer with artificial damage of different sizes at different locations. The results show that the location of the damage influences the sensitivity of detection and localization accuracy for the used detection and localization methods. Localization accuracy is enhanced as it becomes closer to the array’s center, but its detection sensitivity deteriorates.

Publisher

MDPI AG

Reference30 articles.

1. Structural health monitoring: Closing the gap between research and industrial deployment

2. An introduction to structural health monitoring

3. Identification of Damage Using Lamb Waves: From Fundamentals to Applications;Su,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3