A New Algorithm to Solve the Extended-Oxley Analytical Model of Orthogonal Metal Cutting in Python

Author:

Pantalé OlivierORCID,Dawoua Kaoutoing Maxime,Houé Ngouna Raymond

Abstract

This paper presents a new implementation method of the Extended-Oxley analytical model, previously proposed by Lalwani in 2009, for orthogonal cutting of metals with a Johnson–Cook thermo-elastoplastic flow law. The present work aims to improve the implementation of this analytical model in order to propose a unified solution that overcomes the main shortcomings of the original model: the non-uniqueness of the solution, the low accuracy of the obtained solution, and the relatively long computational time for a purely analytical approach. In the proposed implementation, the determination of the optimal set of model parameters is based on an optimization method using the Python LMFIT library with which we have developed a dual Levenberg–Marquardt optimization algorithm. In this paper, the performance and efficiency of the developed model are presented by comparing our results for a 1045 steel with the simulation results obtained in the original paper proposed by Lalwani. The comparison shows a considerable gain in terms of computational speed (more than 2000 times faster than the original model), uniqueness of the obtained solution, and accuracy of the obtained numerical solution (almost zero force imbalance).

Publisher

MDPI AG

Subject

General Medicine

Reference30 articles.

1. Accessing the cutting forces in machining processes: An overview

2. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python https://ui.adsabs.harvard.edu/abs/2016ascl.soft06014N/abstract

3. Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model

4. Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip

5. Calculating the shear angle in orthogonal metal cutting from fundamental stress-strain-strain rate properties of the work material;Oxley,1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3