High-Speed Cutting of Synthetic Trabecular Bone—A Combined Experimental–Computational Investigation

Author:

O’Neill Macdarragh,Vaughan Ted J.

Abstract

Orthopaedic surgical cutting instruments are required to generate sufficient forces to penetrate bone tissue while minimising the risk of thermal and mechanical damage to the surrounding environment. This study presents a combined experimental–computational approach to determine relationships between key cutting parameters and overall cutting performance of a polyurethane-based synthetic trabecular bone analogue under orthogonal cutting conditions. An experimental model of orthogonal cutting was developed, whereby an adaptable cutting tool fixture driven by a servo-hydraulic uniaxial test machine was used to carry out cutting tests on Sawbone® trabecular bone analogues. A computational model of the orthogonal cutting process was developed using Abaqus/Explicit, whereby an Isotropic Hardening Crushable Foam elastic-plastic model was used to capture the complex post-yield behaviour of the synthetic trabecular bone. It was found that lower tool rake angles resulted in the formation of larger discontinuous chips and higher cutting forces, while higher rake angles tended to lead to more continuous chip formation and lower cutting forces. The computational modelling framework provided captured features of both chip formation and axial cutting forces over a wide range of cutting parameters when compared with experimental observations. This experimentally based computational modelling framework for orthogonal cutting of trabecular bone analogues has the potential to be applied to more complex three-dimensional cutting processes in the future.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3