Existence of Incompressible Vortex-Class Phenomena and Variational Formulation of Raleigh–Plesset Cavitation Dynamics

Author:

Moschandreou Terry EleftheriosORCID,Afas Keith ChristianORCID

Abstract

The following article extends a decomposition to the Navier–Stokes Equations (NSEs) demonstrated in earlier studies by corresponding author, in order to now demonstrate the existence of a vortex elliptical set inherent to the NSEs. These vortice elliptical sets are used to comment on the existence of solutions relative to the NSEs and to identify a potential manner of investigation into the classical Millennial Problem encompassed in Fefferman’s presentation. The article also presents the utilization of a recently developed versatile variational framework by both authors in order to study a related fluid-mechanics phenomena, namely the Raleigh–Plesset equations, which are ultimately obtained from the NSEs. The article develops, for the first time, a Lagrangian density functional for a closed surface which when minimized produced the Raleigh–Plesset equations. The article then proceeds with the demonstration that the Raleigh–Plesset equations may be obtained from this energy functional and identifies the energy dissipation predicted by the proposed Lagrangian density. The importance of the novel Raleigh–Plesset functional in the greater scheme of fluid mechanics is commented upon.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3