On the Countering of Free Vibrations by Forcing: Part II—Damped Oscillations and Decaying Forcing

Author:

Campos Luiz M. B. C.1ORCID,Silva Manuel J. S.1ORCID

Affiliation:

1. CCTAE, IDMEC, LAETA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract

The present two-part paper concerns the active vibration suppression for the simplest damped continuous system, namely the transverse oscillations of an elastic string, with constant tension and mass density per unit length and friction force proportional to the velocity, described by the telegraph or wave-diffusion equation, in two complementary parts. The initial part I considers non-resonant and resonant forcing, by concentrated point forces or continuous force distributions independent of time, with phase shift between the forced and free oscillations, in the absence of damping, in which case the forced telegraph equation reduces to the forced classical wave equation. The present and final part II uses the forced wave-diffusion equation to model the effect of damping, both as amplitude decay and phase shift in time, for non-resonant and resonant forcing by a single point force, with constant magnitude or magnitude decaying exponentially in time at an arbitrary rate. Assuming a finite elastic string fixed at both ends, the free oscillations are (i) sinusoidal modes in space-time with exponential decay in time due to damping. The non-resonant forced oscillations at an applied frequency distinct from a natural frequency are also (ii) sinusoidal in space-time, with constant amplitude and a phase shift such that the work of the applied force balances the dissipation. For resonant forcing at an applied frequency equal to a natural frequency, the sinusoidal oscillations in space-time have (iii) a constant amplitude and a phase shift of π/2. In both cases, the (ii) non-resonant or (iii) resonant forcing dominates the decaying free oscillations after some time. Even by optimizing the forcing to minimize the total energy of oscillation, it remains below the energy of the free oscillation alone, but only for a short time—generally a fraction of the period. A more effective method of countering the damped free oscillations is to use forcing with amplitude decaying exponentially in time; by suitable choice of the forcing decay relative to the free damping, the total energy of oscillation over all time can be reduced to no more than 1/16th of the energy of the free oscillation.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Medicine

Reference116 articles.

1. Strutt, J.W., and Lindsay, R.B. (1945). The Theory of Sound, Dover Publications, Inc.. [2nd ed.].

2. Morse, P.M., and Ingard, K.U. (1968). Theoretical Acoustics, McGraw-Hill Book Company.

3. Pierce, A.D. (2019). Acoustics: An Introduction to Its Physical Principles and Applications, Springer International Publishing. [3rd ed.].

4. The Problem of the Whispering Gallery;Strutt;London Edinburgh Dublin Philos. Mag. J. Sci.,1910

5. Lighthill, M.J. (1978). Waves in Fluids, Cambridge University Press. [1st ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3