Fatigue Damage of Short Fibre-Reinforced Thermoplastics in Crashworthiness Simulation

Author:

Witzgall Christian1ORCID,Wartzack Sandro1ORCID

Affiliation:

1. Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

Abstract

Service loads repeatedly stress components on a regular basis and lead to fatigue damage in the material. In the case of components made of short fibre-reinforced thermoplastics, which are also crash-relevant in addition to only bearing service loads, however, a significant deterioration in mechanical properties can be observed after fatigue damage has been introduced. This is where the approach presented in this paper comes in: in order to enable a realistic simulation of such components in their used conditions, the material data are assigned depending on previously determined damage. The approach, which combines the domains of highly dynamic and cyclic experiments as well as different types of numerical simulations, is tested for its performance in the present paper. For this purpose, component tests are carried out on cross-rib beams, which serve to validate the method. The novelty and uniqueness of this paper lies in the linking of fatigue life and crashworthiness considerations for short fibre-reinforced thermoplastics, which, in this case, is raised to a new level by considering the component level for the first time.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Engineering (miscellaneous)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3