Apparent Randomness of the Normal-Force Dependence of the Coefficient of Friction between a Bare Finger and Artificial Skin under Active Tactile Exploration

Author:

Inoue Koki,Okamoto ShogoORCID,Akiyama Yasuhiro,Yamada Yoji

Abstract

When a finger actively slides over a surface, contact conditions including the contact area, sliding speed, and finger moisture naturally fluctuate. These random fluctuations lead to an apparent change of frictional properties and influence tactile pleasantness. Nonetheless, this probabilistic behavior has not been explicitly analyzed in previous studies on human fingertips. This study investigates the dependence of the coefficients of kinetic friction on the normal force produced by sliding a bare finger over different artificial skins with seven levels of hardness. The coefficient of friction was modeled as a power function of the normal force. An experimental study that involved sliding a finger over artificial skin surfaces was carried out under two conditions: the fingertip being wiped by a dry cloth or a cloth soaked in ethanol. Although the exponential term was assumed to be nearly constant for identical tribological conditions, we observed that the exponent varied randomly and could be negative, zero, or positive. This can be attributed to the variation of gross finger deformation that was not controlled during the observation. The probability density function of the exponent depended on the moisture content of the finger and object hardness. The variability of the exponent was higher for a soft material than it was for a harder material. In other words, for the softer materials, the exponent appears more random. Furthermore, the exponent tended to be positive and the coefficient of friction increased with the normal force when the finger was wiped with ethanol. These findings play an important role in understanding the frictional forces produced during skin–skin contact in terms of determining the root cause of random variations in the dependence of the coefficient of friction on the normal force.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Response Surface of Softness Perceived via Frictional Tactile Stimuli on Flat Touch-display;International Symposium on Affective Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3