Synergistic Effect of Carbon Nanotubes, Zinc, and Copper Oxides on Rheological Properties of Fracturing Fluid: A Comparative Study

Author:

Yehia Fatma12ORCID,Gado Walaa3,Al-Gamal Abdalrahman G.3,Nishu 2,Yang Chao2,Liu Lihua2ORCID,Kabel Khalid I.3ORCID

Affiliation:

1. School of Energy Science and Technology, University of Science and Technology of China (USTC), Hefei 230026, China

2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

3. Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11765, Egypt

Abstract

Nanomaterials play a beneficial role in enhancing the rheological behavior of fracturing (frac) fluid by reacting with intermolecular structures. The inclusion of these materials into the fluid improves its stability, increases the viscosity of polymers, and enhances its resistance to high temperature and pressure. In this investigation, multi-walled carbon nanotubes (CNTs), nano-zinc oxides (N-ZnO), and nano-copper oxides (N-CuO) have been utilized to ameliorate the rheological properties of water-based fracturing fluid. Different concentrations of these aforementioned nanomaterials were prepared to determine their effects on the rheological behavior of the fluid. The results revealed that the size of nanoparticles ranged from 10 to 500 nm, 300 nm, and 295 nm for CNTs, N-ZnO, and N-CuO, respectively. Moreover, employing CNTs exhibited a resistance of 550 cp at 25 °C and reached 360 cp at 50 °C with a CNT concentration of 0.5 g/L. In contrast, N-CuO and N-ZnO showed a resistance of 206 cp at 25 °C and significantly decreased to 17 cp and 16 cp with higher concentrations of 10 g/L and 1 g/L, respectively. Based on these findings, this study recommends utilizing CNTs to enhance fracking fluid’s chemical and physical properties, which need to be highly viscous and stable under reservoir conditions.

Funder

Alliance of International Science Organizations (ANSO) at the University of Science and Technology of China

Academy of Scientific Research and Technology (ASRT) under the Egyptian Ministry of Higher Education, Egypt

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3