A New Method for Numerical Simulation of Coalbed Methane Pilot Horizontal Wells—Taking the Bowen Basin C Pilot Area in Australia as an Example

Author:

Wang Xidong1,Duan Lijiang2,Zhang Songhang1ORCID,Tang Shuheng1,Lv Jianwei1,Li Xudong1

Affiliation:

1. School of Energy, China University of Geosciences, Beijing 100083, China

2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

Abstract

Coalbed methane (CBM) pilot wells typically exhibit a short production period, necessitating evaluation of their estimated ultimate recovery (EUR) through numerical simulation. Utilizing limited geological data from the pilot areas to finish history matching and subsequent production forecasting presents substantial challenges. This paper introduces a comprehensive numerical simulation workflow for CBM pilot wells, encompassing the following steps. Initially, geological parameters are categorized into two groups based on their statistical distribution trends: trend parameters (i.e., gas content, permeability, Langmuir volume, and Langmuir pressure) and non-trend parameters (i.e., fracture porosity, gas–water relative permeability, and rock compressibility). The probability method is employed to ascertain the probable high and low limits for trend parameter distributions, while empirical or analogous methods are applied to define the boundaries for non-trend parameters. Subsequently, the parameter sensitivity analysis is conducted to understand the influence of varying parameters on cumulative gas and water production. Conclusively, experimental design algorithms generate over 100 simulation cases using the identified sensitive parameters, from which the top ten optimal cases are chosen for EUR prediction. This workflow features two technological innovations: (1) considering the most comprehensive set of reservoir parameters for uncertainty and sensitivity analyses, and (2) considering the matching accuracy of both cumulative production and dynamic production trends when selecting optimal matching cases. This approach was successfully implemented in the C pilot area of the Bowen Basin, Australia. In addition, it offers valuable insights for numerical simulation of unconventional natural gases, such as shale gas.

Funder

National Natural Science Foundation of China: “Basic research on wettability and gas-water mobility of coal reservoirs”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3