Exploring Vortex–Flame Interactions and Combustion Dynamics in Bluff Body-Stabilized Diffusion Flames: Effects of Incoming Flow Velocity and Oxygen Content

Author:

Chen Mingmin1,Zhao Minwei1,Wang Zhihao1,Huang Xinbo1,Zheng Hongtao1,Deng Fuquan12

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

2. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China

Abstract

An afterburner encounters two primary features: high incoming flow velocity and low oxygen concentration in the incoming airflow, which pose substantial challenges and contribute significantly to the deterioration of combustion performance. In order to research the influence of oxygen content on the dynamic combustion characteristics of the afterburner under various inlet velocities, the effect of oxygen content (14–23%) on the field structure of reacting bluff body flow, flame morphology, temperature pulsation, and pressure pulsation of the afterburner at different incoming flow velocities (0.1–0.2 Ma) was investigated in this study by using a large eddy simulation method. The results show that two different instability features, BVK instability and KH instability, are observed in the separated shear layer and wake, and are influenced by changes in the O2 mass fraction and Mach number. The oxygen content and velocity affected the oscillation amplitude of the downstream flow. As the O2 mass fraction decreases, the flame oscillation amplitude increases, the OH concentration in the combustion chamber decreases, and the flame temperature decreases. Additionally, the amplitude of the temperature pulsation in the bluff body flame was primarily influenced by the temperature intensity of the flame and BVK instability. Moreover, the pressure pulsation is predominantly affected by the dynamic characteristics of the flow field behind the bluff body. When the BVK instability dominated, the primary frequency of the pressure pulsation aligned with that of the temperature pulsation. Conversely, under the dominance of the KH instability, the temperature pulsation did not exhibit a distinct main frequency. At present, the influence of oxygen content and incoming flow rate on the combustion performance of the combustion chamber is not clear. The study of the effect of oxygen content on the combustion characteristics of the combustion chamber at different incoming flow rates provides a reference for improving the performance of the combustion chamber and enhancing the combustion stability.

Funder

Heilongjiang Provincial Natural Science Foundation

National Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Hong Kong Scholars Program

Sichuan Science and Technology Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3