Research on the Performance Characteristics of a Waste Heat Recovery Compound System for Series Hybrid Electric Vehicles

Author:

Dang Huifang1,Han Yongqiang1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

Abstract

In this paper, a waste heat recovery compound system for series hybrid electric vehicles is established. The existing components of vehicle air conditioning are used in the organic Rankine cycle (ORC) to realize miniaturization. The waste heat recovery compound system is constructed using GT-SUITE, and the objective of the analysis is to increase the power output and engine thermal efficiency increase ratio (ETEIR). The effects of the expander speed, pump speed, working fluid mass flow rate, and working fluid type on the waste heat recovery compound system are analyzed. The simulation results show that the optimal schemes for the ORC system and compound system corresponding to the expander speed and pump speed are 1000 pm, 2500 rpm, 1200 rpm, and 2500 rpm, respectively. Compared with the ORC system, the maximum power output of the compound system with the same working fluid in three states (1500 rpm, 2500 rpm, and 3500 rpm) of the engine is increased by 21.67%, 24.05%, and 28.23%, respectively. Working fluid supplies of 0.4 kg/s, 0.4 kg/s, and 0.6 kg/s in the three engine states are also considered the best solutions. The working fluid R1234yf and R1234ze are the preferred choices for a waste heat recovery compound system, which have a high system power output and ETEIR and are environmentally friendly.

Funder

Science Fund of State Key Laboratory of Engine Reliability

Technology Development Program of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3