Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks

Author:

Almaraz-Rivera Josue Genaro1ORCID,Cantoral-Ceballos Jose Antonio1ORCID,Botero Juan Felipe2ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico

2. Universidad de Antioquia, Electronics and Telecommunications Engineering Department, GITA-Lab, Medellin 050010, Antioquia, Colombia

Abstract

The Internet of Things (IoT), projected to exceed 30 billion active device connections globally by 2025, presents an expansive attack surface. The frequent collection and dissemination of confidential data on these devices exposes them to significant security risks, including user information theft and denial-of-service attacks. This paper introduces a smart, network-based Intrusion Detection System (IDS) designed to protect IoT networks from distributed denial-of-service attacks. Our methodology involves generating synthetic images from flow-level traffic data of the Bot-IoT and the LATAM-DDoS-IoT datasets and conducting experiments within both supervised and self-supervised learning paradigms. Self-supervised learning is identified in the state of the art as a promising solution to replace the need for massive amounts of manually labeled data, as well as providing robust generalization. Our results showcase that self-supervised learning surpassed supervised learning in terms of classification performance for certain tests. Specifically, it exceeded the F1 score of supervised learning for attack detection by 4.83% and by 14.61% in accuracy for the multiclass task of protocol classification. Drawing from extensive ablation studies presented in our research, we recommend an optimal training framework for upcoming contrastive learning experiments that emphasize visual representations in the cybersecurity realm. This training approach has enabled us to highlight the broader applicability of self-supervised learning, which, in some instances, outperformed supervised learning transferability by over 5% in precision and nearly 1% in F1 score.

Funder

Ibero-American Science and Technology Program for Development CYTED

General System of Royalties from Colombia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3