Abstract
N-nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) that has been classified as a probable human carcinogen in multiple risk assessments. NDMA presence in drinking water is widespread and dependent on source water, disinfectant type, precursors, and water treatment strategies. The objectives of this study were to investigate NDMA formation potential in a modeled monochloramine water treatment plant (WTP) fed by seasonally and spatially varying source water; and to optimize DBP precursor removal by combining conventional and additional treatment techniques. After NDMA analysis, it was found that NDMA formation was significantly dependent on source water type and monochloramine contact time (CT); e.g., at 24 h CT, Cork Brook produced 12.2 ng/L NDMA and Bailey Brook produced 4.2 ng/L NDMA, compared with 72 h CT, Cork Brook produced 4.1 ng/L NDMA and Bailey Brook produced 3.4 ng/L NDMA. No correlations were found between traditional DBP precursors such as total organic carbon and total nitrogen, and the formation of NDMA. The laboratory bench-top treatment system was highly effective at removing traditional DBP precursors, highlighting the need for WTPs to alter their current treatment methods to best accommodate the complex system of DBP control.
Funder
Rhode Island Water Resources Center, University of Rhode Island
U.S. Department of Agriculture
U.S. Department of Housing and Urban Development
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献