Joint Resource Allocation for Multiuser Opportunistic Beamforming Systems with OFDM-NOMA

Author:

Sun Wen-Bin,Tao Ming-LiangORCID,Wang Ling,Yang XinORCID,Zhou Rui-Zhe,Yang Zi-Xiong

Abstract

Opportunistic beamforming (OBF) is an effective technique to improve the spectrum efficiencies (SEs) of multiple-input-multiple-output (MIMO) systems, which can obtain multiuser diversity gains with both low computation complexity and feedback information. To serve multiple users simultaneously, many multiple-access schemes have been researched in OBF. However, for most of the multiple-access schemes, the SEs are not satisfactory. To further improve the SE, this paper proposes a downlink multiuser OBF system, where both orthogonal frequency division multiplexing (OFDM) and non-orthogonal multiple-access (NOMA) methods are applied. The closed-form expressions of the equivalent channels and SE are derived in frequency selective fading channels. Then, an optimization problem is formulated to maximize the SE, although the optimization problem is non-convex and hard to solve. To obtain the solution, we divide the optimization problem into two suboptimal issues, and then a joint iterative algorithm is applied. In the proposed optimization scheme, the subcarrier mapping ϑ, user pairing knc and allocated power Pknc are determined to maximize spectrum efficiency (SE) and reduce bit error ratio (BER). According to numerical results, the proposed method achieves approximately 5 dB gain on both SE and BER, compared to the existing beamforming methods with low feedback information. Moreover, the SE of the proposed method is approximately 2 (bps/Hz) higher than sparse code multiple-access (SCMA), when the number of waiting users and the ratio of transmit power to noise variance are respectively 10 and 20 dB. It is indicated that the proposed scheme can achieve high and low BER with the limited feedback and computation complexity, regardless of the transmit power and the number of waiting users.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3