Gas Sensing Properties of SnO2-Pd Nanoparticles Thick Film by Applying In Situ Synthesis-Loading Method

Author:

Han Jeong In1ORCID,Hong Sung-Jei2

Affiliation:

1. Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

2. Display Research Center, Korea Electronics Technology Institute, Seongnam 13509, Gyeonggi, Republic of Korea

Abstract

In this study, SnO2-Pd nanoparticles(NPs) were made with an in situ synthesis-loading method. The in situ method is to simultaneously load a catalytic element during the procedure to synthesize SnO2 NPs. SnO2-Pd NPs were synthesized by using the in situ method and were heat-treated at 300 °C. As a result, tetragonal structured SnO2-Pd NPs, having an ultrafine size of less than 10 nm and a uniformly distributed Pd catalyst in the SnO2 lattice, were well made and a gas sensitive thick film with a thickness of c.a. 40 μm was well fabricated by using the NPs. Gas sensing characterization for CH4 gas indicated that the gas sensitivity, R3500/R1000, of the thick film consistent with SnO2-Pd NPs synthesized with the in situ synthesis-loading method, followed by heat-treatment at 500 °C, was enhanced to 0.59. Therefore, the in situ synthesis-loading method is available for synthesis of SnO2-Pd NPs for gas sensitive thick film.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3