Author:
Gutierrez-Lopez ,Jimenez Hernandez ,Escalante Sandoval
Abstract
Intensity–duration–frequency (IDF) curves are empirical mathematical formulations that have been used for years in engineering for planning, design, and operation of hydraulic projects. The expression proposed by Sherman (1931) has been validated and used largely by many researchers. In all cases, the four parameters of this formulation are obtained through a numerical procedure. Although these parameters are obtained from historical rainfall observations, the optimization of these parameters implies an infinite combination between them and all those solutions would be valid. Of the four parameters, only one of them (C) has units, and for this reason, a physical sense of parameter C is searched for. Having certainty that some of them can be measured in situ would represent a great advance for modern hydrology. With data from 523 storms monitored every minute, a parametric adjustment was made to the Sherman equation and the typical duration of storms at each site was also obtained. To demonstrate how rainfall intensities vary with the change in C value, rainfall intensities calculations for of 5, 10, 15, and 20 min rainfall duration are used to validate the proposed methodology. The results show that typical storm duration is correlated with the additive parameter of Sherman’s formula.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献