Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization

Author:

Rehman Waheed UrORCID,Wang Xinhua,Cheng Yiqi,Chen Yingchun,Shahzad HasanORCID,Chai Hui,Abbas Kamil,Ullah ZiaORCID,Kanwal Marya

Abstract

Research in the field of tribo-mechatronics has been gaining popularity in recent decades. The objective of the current research is to improve static/dynamics characteristics of hydrostatic bearings. Hydrostatic bearings always work in harsh environmental conditions that effect their performance, and which may even result in their failure. The current research proposes a mathematical model-based system for hydrostatic bearings that helps to improve its static/dynamic characteristics under varying conditions of performance-influencing variables such as temperature, spindle speed, external load, and clearance gap. To achieve these objectives, the capillary restrictors are replaced with servo valves, and a mathematical model is developed along with robust control design systems. The control system consists of feedforward and feedback control techniques that have not been applied before for hydrostatic bearings in the published literature. The feedforward control tries to remove a disturbance before it enters the system while feedback control achieves the objective of disturbance rejection and improves steady-state characteristics. The feedforward control is a trajectory-based controller and the feedback controller is a sliding mode controller with a PID sliding surface. The particle swarm optimization algorithm is used to tune the 6-dimensional vector of the tuning parameters with multi-objective performance criteria. Numerical investigations have been carried out to check the performance of the proposed system under varying conditions of viscosity, clearance gap, external load and the spindle speed. The comparison of our results with the published literature shows the effectiveness of the proposed system.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

science and Technology Program of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3