Fibonacci, Golden Ratio, and Vector Bundles

Author:

Giansiracusa NoahORCID

Abstract

There is a family of vector bundles over the moduli space of stable curves that, while first appearing in theoretical physics, has been an active topic of study for algebraic geometers since the 1990s. By computing the rank of the exceptional Lie algebra g2 case of these bundles in three different ways, a family of summation formulas for Fibonacci numbers in terms of the golden ratio is derived.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference17 articles.

1. Current algebra and Wess-Zumino model in two dimensions

2. Fusion rules and modular transformations in 2D conformal field theory

3. Conformal field theory on universal family of stable curves with gauge symmetries;Tsuchiya;Adv. Stud. Pure Math.,1989

4. Introduction to conformal field theory with gauge symmetries;Ueno;Geom. Phys. Lect. Notes Pure Appl. Math.,1997

5. From WZW models to modular functors;Looijenga,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3