Hybrid Assembly Path Planning for Complex Products by Reusing a Priori Data

Author:

Yi GuodongORCID,Zhou ChuanyuanORCID,Cao Yanpeng,Hu Hangjian

Abstract

Assembly path planning (APP) for complex products is challenging due to the large number of parts and intricate coupling requirements. A hybrid assembly path planning method is proposed herein that reuses a priori paths to improve the efficiency and success ratio. The assembly path is initially segmented to improve its reusability. Subsequently, the planned assembly paths are employed as a priori paths to establish an a priori tree, which is expanded according to the bounding sphere of the part to create the a priori space for path searching. Three rapidly exploring random tree (RRT)-based algorithms are studied for path planning based on a priori path reuse. The RRT* algorithm establishes the new path exploration tree in the early planning stage when there is no a priori path to reuse. The static RRT* (S-RRT*) and dynamic RRT* (D-RRT*) algorithms form the connection between the exploration tree and the a priori tree with a pair of connection points after the extension of the exploration tree to a priori space. The difference between the two algorithms is that the S-RRT* algorithm directly reuses an a priori path and obtains a new path through static backtracking from the endpoint to the starting point. However, the D-RRT* algorithm further extends the exploration tree via the dynamic window approach to avoid collision between an a priori path and obstacles. The algorithm subsequently obtains a new path through dynamic and non-continuous backtracking from the endpoint to the starting point. A hybrid process combining the RRT*, S-RRT*, and D-RRT* algorithms is designed to plan the assembly path for complex products in several cases. The performances of these algorithms are compared, and simulations indicate that the S-RRT* and D-RRT* algorithms are significantly superior to the RRT* algorithm in terms of the efficiency and success ratio of APP. Therefore, hybrid path planning combining the three algorithms is helpful to improving the assembly path planning of complex products.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3