Abstract
For a compact Hausdorff space X, let J be the ordered set associated with the set of all finite open covers of X such that there exists nJ, where nJ is the dimension of X associated with ∂. Therefore, we have Hˇp(X;Z), where 0≤p≤n=nJ. For a continuous self-map f on X, let α∈J be an open cover of X and Lf(α)={Lf(U)|U∈α}. Then, there exists an open fiber cover L˙f(α) of Xf induced by Lf(α). In this paper, we define a topological fiber entropy entL(f) as the supremum of ent(f,L˙f(α)) through all finite open covers of Xf={Lf(U);U⊂X}, where Lf(U) is the f-fiber of U, that is the set of images fn(U) and preimages f−n(U) for n∈N. Then, we prove the conjecture logρ≤entL(f) for f being a continuous self-map on a given compact Hausdorff space X, where ρ is the maximum absolute eigenvalue of f*, which is the linear transformation associated with f on the Čech homology group Hˇ*(X;Z)=⨁i=0nHˇi(X;Z).
Funder
the National Nature Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mirror Operator and Its Application on Chaos;Complex Analysis and Operator Theory;2021-04