Abstract
The existing index system for volatility forecasting only focuses on asset return series or historical volatility, and the prediction model cannot effectively describe the highly complex and nonlinear characteristics of the stock market. In this study, we construct an investor attention factor through a Baidu search index of antecedent keywords, and then combine other trading information such as the trading volume, trend indicator, quote change rate, etc., as input indicators, and finally employ the deep learning model via temporal convolutional networks (TCN) to forecast the volatility under high-frequency financial data. We found that the prediction accuracy of the TCN model with investor attention is better than those of the TCN model without investor attention, the traditional econometric model as the generalized autoregressive conditional heteroscedasticity (GARCH), the heterogeneous autoregressive model of realized volatility (HAR-RV), autoregressive fractionally integrated moving average (ARFIMA) models, and the long short-term memory (LSTM) model with investor attention. Compared with the traditional econometric models, the multi-step prediction results for the TCN model remain robust. Our findings provide a more accurate and robust method for volatility forecasting for big data and enrich the index system of volatility forecasting.
Funder
National Natural Science Foundation of China
Ministry of Education, Humanities and Social Sciences project
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献