Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet

Author:

Abdul Halim NadhirahORCID,Mohd Noor Noor FadiyaORCID

Abstract

A stagnation-point flow of a Powell–Eyring nanofluid along a vertical stretching surface is examined. The buoyancy force effect due to mixed convection is taken into consideration along with the Brownian motion and thermophoresis effect. The flow is investigated under active and passive controls of nanoparticles at the surface. The associating partial differential equations are converted into a set of nonlinear, ordinary differential equations using similarity conversions. Then, the equations are reduced to first-order differential equations before further being solved using the shooting method and bvp4c function in MATLAB. All results are presented in graphical and tabular forms. The buoyancy parameter causes the skin friction coefficient to increase in opposing flows but to decrease in assisting flows. In the absence of buoyancy force, there is no difference in the magnitude of the skin friction coefficient between active and passive controls of the nanoparticles. Stagnation has a bigger influence under passive control in enhancing the heat transfer rate as compared to when the fluid is under active control. Assisting flows have better heat and mass transfer rates with a lower magnitude of skin friction coefficient as compared to opposing flows. In this case, the nanofluid parameters, the Brownian motion, and thermophoresis altogether reduce the overall heat transfer rates of the non-Newtonian nanofluid.

Funder

Universiti Malaya

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3