A Proposal of Quantum-Inspired Machine Learning for Medical Purposes: An Application Case

Author:

Pomarico DomenicoORCID,Fanizzi Annarita,Amoroso NicolaORCID,Bellotti Roberto,Biafora Albino,Bove SamanthaORCID,Didonna VittorioORCID,Forgia Daniele LaORCID,Pastena Maria Irene,Tamborra Pasquale,Zito Alfredo,Lorusso Vito,Massafra Raffaella

Abstract

Learning tasks are implemented via mappings of the sampled data set, including both the classical and the quantum framework. Biomedical data characterizing complex diseases such as cancer typically require an algorithmic support for clinical decisions, especially for early stage tumors that typify breast cancer patients, which are still controllable in a therapeutic and surgical way. Our case study consists of the prediction during the pre-operative stage of lymph node metastasis in breast cancer patients resulting in a negative diagnosis after clinical and radiological exams. The classifier adopted to establish a baseline is characterized by the result invariance for the order permutation of the input features, and it exploits stratifications in the training procedure. The quantum one mimics support vector machine mapping in a high-dimensional feature space, yielded by encoding into qubits, while being characterized by complexity. Feature selection is exploited to study the performances associated with a low number of features, thus implemented in a feasible time. Wide variations in sensitivity and specificity are observed in the selected optimal classifiers during cross-validations for both classification system types, with an easier detection of negative or positive cases depending on the choice between the two training schemes. Clinical practice is still far from being reached, even if the flexible structure of quantum-inspired classifier circuits guarantees further developments to rule interactions among features: this preliminary study is solely intended to provide an overview of the particular tree tensor network scheme in a simplified version adopting just product states, as well as to introduce typical machine learning procedures consisting of feature selection and classifier performance evaluation.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications;IEEE Access;2024

2. A Quick Overview of Quantum Machine Learning;2023 IEEE 5th Eurasia Conference on IOT, Communication and Engineering (ECICE);2023-10-27

3. A Comprehensive Survey on Quantum Machine Learning and Possible Applications;International Journal of E-Health and Medical Communications;2022-12-23

4. Classification of Tumor Metastasis Data by Using Quantum kernel-based Algorithms;2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE);2022-11

5. Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision;Expert Systems with Applications;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3