Detecting IoT User Behavior and Sensitive Information in Encrypted IoT-App Traffic

Author:

Subahi Alanoud,Theodorakopoulos GeorgeORCID

Abstract

Many people use smart-home devices, also known as the Internet of Things (IoT), in their daily lives. Most IoT devices come with a companion mobile application that users need to install on their smartphone or tablet to control, configure, and interface with the IoT device. IoT devices send information about their users from their app directly to the IoT manufacturer’s cloud; we call this the ”app-to-cloud way”. In this research, we invent a tool called IoT-app privacy inspector that can automatically infer the following from the IoT network traffic: the packet that reveals user interaction type with the IoT device via its app (e.g., login), the packets that carry sensitive Personal Identifiable Information (PII), the content type of such sensitive information (e.g., user’s location). We use Random Forest classifier as a supervised machine learning algorithm to extract features from network traffic. To train and test the three different multi-class classifiers, we collect and label network traffic from different IoT devices via their apps. We obtain the following classification accuracy values for the three aforementioned types of information: 99.4%, 99.8%, and 99.8%. This tool can help IoT users take an active role in protecting their privacy.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. The Internet of Things: A survey

2. Vision and challenges for realising the Internet of Things;Sundmaeker;Clust. Eur. Res. Proj. Internet Things Eur. Comm.,2010

3. Internet of Things – New security and privacy challenges

4. Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The digital pheromone: Building digital identity of smartphone users based on time-varying multivariates;ICT Express;2024-08

2. PETRAS: a socio-technical framework for Internet of Things research and development;Frontiers in the Internet of Things;2024-05-09

3. Securing Blockchain-Based IoT Systems: A Review;IEEE Access;2024

4. User oriented smart connected product and smart environment: a systematic literature review;The International Journal of Advanced Manufacturing Technology;2023-12-14

5. MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands;Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3