Phenology of Vegetation in Arid Northwest China Based on Sun-Induced Chlorophyll Fluorescence

Author:

Chen Zhizhong1ORCID,Zan Mei12ORCID,Kong Jingjing12,Yang Shunfa12,Xue Cong12

Affiliation:

1. School of Geographical and Tourism, Xinjiang Normal University, Urumqi 830054, China

2. Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China

Abstract

The accurate monitoring of vegetation phenology is critical for carbon sequestration and sink enhancement. Vegetation phenology in arid zones is more sensitive to climate responses; therefore, it is important to conduct research on phenology in arid zones in response to global climate change. This study compared the applicability of the enhanced vegetation index (EVI), which is superior in arid zones, and global solar-induced chlorophyll fluorescence (GOSIF), which has a high spatial resolution, in extracting vegetation phenology in arid zones, and explored the mechanism of the differences in the effects of environmental factors on the phenology of different vegetation types. Therefore, this study employed a global solar-induced chlorophyll fluorescence (GOSIF) dataset to determine the start and end of the vegetation growth season (SOSSIF and EOSSIF, respectively) in the arid zone of Northwest China from 2001 to 2019. The results were compared with those from the EVI-based MODIS climate product MCD12Q2 (SOSEVI and EOSEVI). Variations in the sensitivity of these climatic datasets concerning temperature, precipitation, and standardised precipitation evapotranspiration index (SPEI) were assessed through partial correlation analysis. Results: Compared to the MCD12Q2 climatic products, SOSSIF and EOSSIF closely matched the observed climate data in the study area. Spring onset was delayed at higher altitudes and latitudes, and the end of the growing season occurred earlier in these areas. Both SOSSIF and EOSSIF significantly advanced from 2001 to 2019 (trend degrees −0.22 and −0.48, respectively). Spring vegetation phenology was chiefly influenced by precipitation while autumn vegetation phenology was driven by both precipitation and SPEI. GOSIF-based climate data provides a more accurate representation of vegetation phenology compared to traditional vegetation indices. The findings of this study contribute to a deeper understanding of the potential ability of EVI and SIF to reveal the influence of vegetation phenology on the carbon cycle.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Forestry

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3