Abstract
The optimization of lithium-ion (Li-ion) battery pack usage has become essential due to the increasing demand for Li-ion batteries. Since degradation in Li-ion batteries is inevitable, there has been some effort recently on research to maximize the utilization of Li-ion battery cells in the pack. Some promising concepts include reconfigurable battery packs and cell replacement to limit the negative impact of early-degraded cells on the entire pack. This paper used a simulation framework, based on a cell voltage model and a degradation model, to study the feasibility and benefits of the cell replacement concept. The simulation conducted in MATLAB involves generating and varying Li-ion cells in the packs stochastically and simulating the life of the cells as well as the packs until they reach their end-of-life stage. It was found that the cell replacement method can increase the total number of cycles of the battery packs, effectively prolonging the lifespan of the packs. It is also determined that this approach can be more economically beneficial than the current approach of simple pack replacement. For the cell replacement concept to be practical, two main design criteria should be satisfied including individual cell monitoring and easy accessibility to cells at failure stage.
Funder
Canada Research Chairs
Natural Sciences and Engineering Research Council
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献