Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure

Author:

Huang WeimingORCID,Raza Syed Amir,Mirzov OlegORCID,Harrie LarsORCID

Abstract

Geospatial information is indispensable for various real-world applications and is thus a prominent part of today’s data science landscape. Geospatial data is primarily maintained and disseminated through spatial data infrastructures (SDIs). However, current SDIs are facing challenges in terms of data integration and semantic heterogeneity because of their partially siloed data organization. In this context, linked data provides a promising means to unravel these challenges, and it is seen as one of the key factors moving SDIs toward the next generation. In this study, we investigate the technical environment of the support for geospatial linked data by assessing and benchmarking some popular and well-known spatially enabled RDF stores (RDF4J, GeoSPARQL-Jena, Virtuoso, Stardog, and GraphDB), with a focus on GeoSPARQL compliance and query performance. The tests were performed in two different scenarios. In the first scenario, geospatial data forms a part of a large-scale data infrastructure and is integrated with other types of data. In this scenario, we used ICOS Carbon Portal’s metadata—a real-world Earth Science linked data infrastructure. In the second scenario, we benchmarked the RDF stores in a dedicated SDI environment that contains purely geospatial data, and we used geospatial datasets with both crowd-sourced and authoritative data (the same test data used in a previous benchmark study, the Geographica benchmark). The assessment and benchmarking results demonstrate that the GeoSPARQL compliance of the RDF stores has encouragingly advanced in the last several years. The query performances are generally acceptable, and spatial indexing is imperative when handling a large number of geospatial objects. Nevertheless, query correctness remains a challenge for cross-database interoperability. In conclusion, the results indicate that the spatial capacity of the RDF stores has become increasingly mature, which could benefit the development of future SDIs.

Funder

Lunds Universitet

China Scholarship Council

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference52 articles.

1. Towards a high level of semantic harmonisation in the geospatial domain

2. INSPIREhttps://inspire.ec.europa.eu/

3. If You Can’t Link to it… Does it Exist?https://www.edparsons.com/2017/09/cant-link-exist/

4. Geospatial semantics and linked spatiotemporal data–Past, present, and future;Janowicz;Semant. Web,2012

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3