High-performance Overlay Analysis of Massive Geographic Polygons That Considers Shape Complexity in a Cloud Environment

Author:

Zhao ,Jin ,Fan ,Song ,Zhou ,Jiang

Abstract

: Overlay analysis is a common task in geographic computing that is widely used in geographic information systems, computer graphics, and computer science. With the breakthroughs in Earth observation technologies, particularly the emergence of high-resolution satellite remote-sensing technology, geographic data have demonstrated explosive growth. The overlay analysis of massive and complex geographic data has become a computationally intensive task. Distributed parallel processing in a cloud environment provides an efficient solution to this problem. The cloud computing paradigm represented by Spark has become the standard for massive data processing in the industry and academia due to its large-scale and low-latency characteristics. The cloud computing paradigm has attracted further attention for the purpose of solving the overlay analysis of massive data. These studies mainly focus on how to implement parallel overlay analysis in a cloud computing paradigm but pay less attention to the impact of spatial data graphics complexity on parallel computing efficiency, especially the data skew caused by the difference in the graphic complexity. Geographic polygons often have complex graphical structures, such as many vertices, composite structures including holes and islands. When the Spark paradigm is used to solve the overlay analysis of massive geographic polygons, its calculation efficiency is closely related to factors such as data organization and algorithm design. Considering the influence of the shape complexity of polygons on the performance of overlay analysis, we design and implement a parallel processing algorithm based on the Spark paradigm in this paper. Based on the analysis of the shape complexity of polygons, the overlay analysis speed is improved via reasonable data partition, distributed spatial index, a minimum boundary rectangular filter and other optimization processes, and the high speed and parallel efficiency are maintained.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference37 articles.

1. Algorithmic Foundations of Geographic Information Systems;van Kreveld,1997

2. Big data GIS;Li;Geomat. Inf. Sci. Wuhan Univ.,2014

3. Big data in smart cities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3