Abstract
The impact of device parameters, including AlN film thickness (hAlN), number of interdigital transducers (NIDT), and acoustic propagation direction, on the performance of c-plane AlN/sapphire-based SAW temperature sensors with an acoustic wavelength (λ) of 8 μm, was investigated. The results showed that resonant frequency (fr) decreased linearly, the quality factor (Q) decreased and the electromechanical coupling coefficient (Kt2) increased for all the sensors with temperature increasing from −50 to 250 °C. The temperature coefficients of frequency (TCFs) of sensors on AlN films with thicknesses of 0.8 and 1.2 μm were −65.57 and −62.49 ppm/°C, respectively, indicating that a reduction in hAlN/λ favored the improvement of TCF. The acoustic propagation direction and NIDT did not obviously impact the TCF of sensors, but they significantly influenced the Q and Kt2 of the sensors. At all temperatures measured, sensors along the a-direction exhibited higher fr, Q and Kt2 than those along the m-direction, and sensors with NIDT of 300 showed higher Q and Kt2 values than those with NIDT of 100 and 180. Moreover, the elastic stiffness of AlN was extracted by fitting coupling of modes (COM) model simulation to the experimental results of sensors along different directions considering Euler transformation of material parameter-tensors. The higher fr of the sensor along the a-direction than that along the m-direction can be attributed to its larger elastic stiffness c11, c22, c44, and c55 values.
Funder
Science Challenge Project
National Natural Sciences Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献