Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein Model

Author:

Yang Liu,Zhao Zhongyang,Zhang Yi,Li Dongjie

Abstract

Piezoelectric actuators (PEAs), as a smart material with excellent characteristics, are increasingly used in high-precision and high-speed nano-positioning systems. Different from the usual positioning control or fixed frequency tracking control, the more accurate rate-dependent PEA nonlinear model is needed in random signal dynamic tracking control systems such as active vibration control. In response to this problem, this paper proposes a Hammerstein model based on fractional order rate correlation. The improved Bouc-Wen model is used to describe the asymmetric hysteresis characteristics of PEA, and the fractional order model is used to describe the dynamic characteristics of PEA. The nonlinear rate-dependent hysteresis model can be used to accurately describe the dynamic characteristics of PEA. Compared with the integer order model or linear autoregressive model to describe the dynamic characteristics of the PEA Hammerstein model, the modeling accuracy is higher. Moreover, an artificial bee colony algorithm (DE-ABC) based on differential evolution was proposed to identify model parameters. By adding the mutation strategy and chaos search of the genetic algorithm into the previous ABC, the convergence speed of the algorithm is faster and the identification accuracy is higher, and the simultaneous identification of order and coefficient of the fractional model is realized. Finally, by comparing the simulation and experimental data of multiple sets of sinusoidal excitation with different frequencies, the effectiveness of the proposed modeling method and the accuracy and rapidity of the identification algorithm are verified. The results show that, in the wide frequency range of 1–100 Hz, the proposed method can obtain more accurate rate-correlation models than the Bouc-Wen model, the Hammerstein model based on integer order or the linear autoregressive model to describe dynamic characteristics. The maximum error (Max error) is 0.0915 μm, and the maximum mean square error (RMSE) is 0.0244.

Funder

National Natural Science Foundation of China

Young Innovative Talents Project of Ordinary Universities in Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3