Integrated Modeling of Hybrid Nanofiltration/Reverse Osmosis Desalination Plant Using Deep Learning-Based Crow Search Optimization Algorithm

Author:

Abba Sani. I.1ORCID,Usman Jamilu1ORCID,Abdulazeez Ismail1ORCID,Lawal Dahiru U.1ORCID,Baig Nadeem1ORCID,Usman A. G.2ORCID,Aljundi Isam H.13ORCID

Affiliation:

1. Interdisciplinary Research Centre for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. Operational Research Centre in Healthcare, Near East University, TRNC, Mersin 10, Nicosia 99138, Turkey

3. Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

The need for reliable, state-of-the-art environmental investigations and pioneering approaches to address pressing ecological dilemmas and to nurture the sustainable development goals (SDGs) cannot be overstated. With the power to revolutionize desalination processes, artificial intelligence (AI) models hold the potential to address global water scarcity challenges and contribute to a more sustainable and resilient future. The realm of desalination has exhibited a mounting inclination toward modeling the efficacy of the hybrid nanofiltration/reverse osmosis (NF–RO) process. In this research, the performance of NF–RO based on permeate conductivity was developed using deep learning long short-term memory (LSTM) integrated with an optimized metaheuristic crow search algorithm (CSA) (LSTM-CSA). Before model development, an uncertainty Monte Carlo simulation was adopted to evaluate the uncertainty attributed to the prediction. The results based on several performance statistical criteria (root mean square error (RMSE) and mean absolute error (MAE)) demonstrated the reliability of both LSTM (RMSE = 0.1971, MAE = 0.2022) and the LSTM-CSA (RMSE = 0.1890, MAE = 0.1420), with the latter achieving the highest accuracy. The accuracy was also evaluated using new 2D graphical visualization, including a cumulative distribution function (CDF) and fan plot to justify the other evaluation indicators such as standard deviation and determination coefficients. The outcomes proved that AI could optimize energy usage, identify energy-saving opportunities, and suggest more sustainable operating strategies. Additionally, AI can aid in developing advanced brine treatment techniques, facilitating the extraction of valuable resources from the brine, thus minimizing waste and maximizing resource utilization.

Funder

King Fahd University of Petroleum & Minerals (KFUPM) under the Interdisciplinary Research Center for Membranes and Water Security

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3