A Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing

Author:

Bruni Maria Elena,Khodaparasti Sara

Abstract

In contemporary urban logistics, drones will become a preferred transportation mode for last-mile deliveries, as they have shown commercial potential and triple-bottom-line performance. Drones, in fact, address many challenges related to congestion and emissions and can streamline the last leg of the supply chain, while maintaining economic performance. Despite the common conviction that drones will reshape the future of deliveries, numerous hurdles prevent practical implementation of this futuristic vision. The sharing economy, referred to as a collaborative business model that foster sharing, exchanging and renting resources, could lead to operational improvements and enhance the cost control ability and the flexibility of companies using drones. For instance, the Amazon patent for drone beehives, which are fulfilment centers where drones can be restocked before flying out again for another delivery, could be established as a shared delivery systems where different freight carriers jointly deliver goods to customers. Only a few studies have addressed the problem of operating such facilities providing services to retail companies. In this paper, we formulate the problem as a deterministic location-routing model and derive its robust counterpart under the travel time uncertainty. To tackle the computational complexity of the model caused by the non-linear energy consumption rates in drone battery, we propose a tailored matheuristic combining variable neighborhood descent with a cut generation approach. The computational experiments show the efficiency of the solution approach especially compared to the Gurobi solver.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference23 articles.

1. Vehicle Routing Problems for Drone Delivery

2. Optimization of multi-package drone deliveries considering battery capacity;Choi;Proceedings of the 96th Annual Meeting of the Transportation Research Board,2017

3. Sizing of the Drone Delivery Fleet Considering Energy Autonomy

4. Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities

5. Addressing the Challenges of Last-mile: The Drone Routing Problem with Shared Fulfillment Centers;Bruni;Proceedings of the ICORES 2022: 11th International Conference on Operations Research and Enterprise Systems,2022

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3