Abstract
The flow characteristics in a ring-shaped microchannel with an inner diameter of 1 mm were studied in two-phase flow systems with air-water, air-glycerol aqueous solution and air-ethanol aqueous solution using the differential pressure method. The effects of liquid properties (surface tension and viscosity) and gas/liquid superficial velocity on frictional pressure drop were discussed. The experimental results show that the frictional pressure gradient increases with the increase of superficial gas velocity, superficial liquid velocity and liquid viscosity, and increases with the decrease of liquid surface tension, which has a good agreement with the literature values. The friction pressure drop data are compared with the classical models and correlations in literature, and a reliable correlation is proposed for prediction of two-phase friction coefficient in microchannels.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献