Abstract
The use of face masks has increased dramatically since the COVID-19 pandemic started in order to to curb the spread of the disease. Additionally, breakthrough infections caused by the Delta and Omicron variants have further increased the importance of wearing a face mask, even for vaccinated individuals. However, the use of face masks also induces attenuation in speech signals, and this change may impact speech processing technologies, e.g., automated speaker verification (ASV) and speech to text conversion. In this paper we examine Automatic Speaker Verification (ASV) systems against the speech samples in the presence of three different types of face mask: surgical, cloth, and filtered N95, and analyze the impact on acoustics and other factors. In addition, we explore the effect of different microphones, and distance from the microphone, and the impact of face masks when speakers use ASV systems in real-world scenarios. Our analysis shows a significant deterioration in performance when an ASV system encounters different face masks, microphones, and variable distance between the subject and microphone. To address this problem, this paper proposes a novel framework to overcome performance degradation in these scenarios by realigning the ASV system. The novelty of the proposed ASV framework is as follows: first, we propose a fused feature descriptor by concatenating the novel Ternary Deviated overlapping Patterns (TDoP), Mel Frequency Cepstral Coefficients (MFCC), and Gammatone Cepstral Coefficients (GTCC), which are used by both the ensemble learning-based ASV and anomaly detection system in the proposed ASV architecture. Second, this paper proposes an anomaly detection model for identifying vocal samples produced in the presence of face masks. Next, it presents a Peak Norm (PN) filter to approximate the signal of the speaker without a face mask in order to boost the accuracy of ASV systems. Finally, the features of filtered samples utilizing the PN filter and samples without face masks are passed to the proposed ASV to test for improved accuracy. The proposed ASV system achieved an accuracy of 0.99 and 0.92, respectively, on samples recorded without a face mask and with different face masks. Although the use of face masks affects the ASV system, the PN filtering solution overcomes this deficiency up to 4%. Similarly, when exposed to different microphones and distances, the PN approach enhanced system accuracy by up to 7% and 9%, respectively. The results demonstrate the effectiveness of the presented framework against an in-house prepared, diverse Multi Speaker Face Masks (MSFM) dataset, (IRB No. FY2021-83), consisting of samples of subjects taken with a variety of face masks and microphones, and from different distances.
Funder
Deputyship for Research & Innovation, Ministry of Education 517 in Saudi Arabia
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference52 articles.
1. CDC Shares ’Pivotal Discovery’ on COVID-19 Breakthrough Infections That Led to New Mask Guidance. CNN Healthhttps://edition.cnn.com/2021/07/30/health/breakthrough-infection-masks-cdc-provincetown-study/index.html
2. Vaccinated People Make up 75% of Recent COVID-19 Cases in Singapore, but Few Fall Ill. REUTERShttps://www.reuters.com/world/asia-pacific/vaccinated-people-singapore-make-up-three-quarters-recent-covid-19-cases-2021-07-23/
3. Vaccinated People Infected with Delta Remain Contagious. WebMDhttps://www.webmd.com/lung/news/20220112/cdc-better-masks-for-omicron
4. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study
5. Acoustic effects of medical, cloth, and transparent face masks on speech signals
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献