Evolutionary Processes Shaping Postglacial Gene Pools of High-Altitude Forests: Evidence from the Endemic Eucalypts of Tasmania

Author:

Jones Rebecca C.12,Harrison Peter A.12ORCID,Hudson Corey J.1,Hirst Cate A.1,Matthews Alexander T.1,Rouger Romuald1,Wise Sascha L.1ORCID,O’Reilly-Wapstra Julianne M.12,Wiltshire Robert J. E.1,Jordan Gregory J.1ORCID,Vaillancourt René E.12,Potts Brad M.12ORCID

Affiliation:

1. School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia

2. Australian Research Council Centre for Forest Value, Private Bag 55, Hobart, TAS 7001, Australia

Abstract

Climatic changes during the Pleistocene were responsible for dramatic redistributions of plant species worldwide. On the rugged southern hemisphere island of Tasmania, temperature increases following the last glaciation saw upslope migration of climatically suitable species from lowland refugia and the expansion of eucalypt-dominated forests and woodlands in the Central Highlands. We integrate multiple lines of evidence (chloroplast and nuclear DNA markers, seedling morphology, and survival in common garden experiments) from a group of closely related endemic eucalypts (the alpine white gums) to argue that (i) the Central Highlands of the island were colonised by multiple glacial refugia with hybridisation among species and previously separated populations, and (ii) natural selection has filtered the admixed populations, resulting in local adaptation to the harsh sub-alpine environment. Chloroplast haplotype diversity decreased and nuclear microsatellite diversity increased with altitude, chloroplast sharing among taxa was common, and nuclear DNA differentiation of morphologically distinct taxa was lower in the Central Highlands compared with lowland regions. Local adaptation in the highlands was signalled by evidence from (i) a glasshouse trial in which directional selection (QST > FST) had shaped seedling morphological trait variation and (ii) population survival differences in 35-year-old reciprocal plantings along the major environmental gradients. We conclude that the evolutionary response of these island endemic trees to past climate change has involved the interplay of both hybridisation and natural selection, highlighting the importance of maintaining species interactions under future climate change.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3