Soil Erosion Characteristics in Tropical Island Watersheds Based on CSLE Model: Discussion of Driving Mechanisms

Author:

Zou Yi1,Wang Yimei1,He Yanhu2,Zhu Lirong3,Xue Shiyu1,Liang Xu1,Ye Changqing14

Affiliation:

1. College of Ecology and Environment, Hainan University, Haikou 570228, China

2. Institute of Environmental and Ecological Engineering, Guangdong Technology University, Guangzhou 510000, China

3. School of Tourism, Hainan University, Haikou 570228, China

4. Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China

Abstract

Previous research has primarily focused on soil erosion issues in arid and semi-arid regions, with a limited understanding of soil erosion mechanisms in tropical areas. Additionally, there is a lack of a holistic perspective to determine the spatial attribution of soil erosion. The conversion of tropical rainforests into economically driven plantations, like rubber and pulpwood, has resulted in distinct soil erosion characteristics in specific regions. To enhance our knowledge of soil erosion patterns and mechanisms in tropical regions, it is necessary to examine soil erosion in the three major watersheds of Hainan Island from 1991 to 2021, which encompass significant geographical features such as tropical island water sources and tropical rainforest national parks. The study employed the China Soil Loss Equation (CSLE) model, slope trend analysis, Pearson correlation analysis, land-use transfer matrix, and spatial attribution analysis to examine soil erosion under different scenarios. The research results indicate that scenarios driven by the combination of natural and human factors have the greatest impact on soil erosion changes in the entire study area. Co-driven increases affected 53.56% of the area, while co-driven decreases affected 21.74%. The 31-year soil erosion showed an overall increasing trend. Human factors were identified as the primary drivers of increased soil erosion in the Nandu River basin, while a combination of climate and anthropogenic factors influenced the decrease in soil erosion. In the Changhua River basin, climate and human activities contributed to the soil erosion increase, while human activities primarily caused the decrease in soil erosion. In the Wanquan River basin, climate intensified soil erosion, whereas human activities mitigated it. This study underscores the significant combined impact of human activities and natural factors on soil erosion in tropical regions. It emphasizes the importance of considering human-induced factors when implementing soil erosion control measures in tropical regions.

Funder

Natural Science Foundation of Hainan

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3