Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index

Author:

Wei Xiaoshuai12,Xu Mingze3,Zhao Hongxian12,Liu Xinyue12,Guo Zifan12,Li Xinhao12,Zha Tianshan12

Affiliation:

1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

3. Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

Abstract

The affiliation between vegetation phenology and seasonal climate (start and end times of the growing season, or SOS and EOS) provides a basis for acquiring insight into the dynamic response of terrestrial ecosystems to the effects of climate change. Although climate warming is an important factor affecting the advancement or delay of plant phenology, understanding the sensitivity of phenology to seasonal variation in climate factors (e.g., local air temperature, precipitation) is generally lacking under different climate backgrounds. In this study, we investigated the interannual variability of grassland phenology and its spatial variation in temperate regions of China based on satellite-derived products for the normalized difference vegetation index (NDVI) and weather data acquired from 2001 to 2020. We found that due to differences in local climate conditions, the effects of seasonal warming and precipitation on phenology were divergent or even opposite during the 20 years. The sensitivities of the start of growing season (SOS) to both spring temperature and last-winter precipitation was controlled by mean annual precipitation in terms of spatial variation. The SOS in the semi-humid (200–400 mm) region was most sensitive to spring temperature, advancing 5.24 days for each 1 °C rise in the average spring temperature (p < 0.05), while it was most sensitive to last-winter precipitation in arid regions (<200 mm), with SOS advancing up to 2.23 days for every 1 mm increase in the last-winter precipitation (p < 0.05). The end of growing season (EOS) was sensitive to autumn temperature, being delayed 10.13 days for each 1 °C rise in the average autumn temperature in regions with temperatures between −10 °C and −5 °C (p < 0.05). The uncertainty in the determination of the EOS could conceivably be greater than the determination of the SOS due to the dual effects of pre-autumn climate and growth constraints induced by declining fall temperatures. The effect of atmospheric warming on grassland phenology was lessened with increased atmospheric and soil aridity, suggesting that the interaction of regional drought and climate warming is an important source for local-to-regional differences and uncertainties in grass phenological response.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3