Analysis of Influencing Factors on Farmers’ Willingness to Pay for the Use of Residential Land Based on Supervised Machine Learning Algorithms

Author:

Jin Jiafang1ORCID,Li Xinyi1ORCID,Liu Guoxiu1ORCID,Dai Xiaowen1ORCID,Ran Ruiping1

Affiliation:

1. School of Management, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Aimed at advancing the reform of the Paid Use of Residential Land, this study investigates the willingness to pay among farmers and its underlying factors. Based on a Logistic Regression analysis of a micro-survey of 450 pieces of data from the Sichuan Province in 2023, we evaluated the effects of three factors, namely individual, regional and cultural forces. Further, Random Forest analysis and SHAP value interpretation refined our insights into these effects. Firstly, the research reveals a significant willingness to pay, with 83.6% of sample farmers being ready to participate in the reform, and 53.1% of them preferring online payment (the funds are mostly expected to be used for village infrastructure improvements). Secondly, the study implies that Individual Force is the most impactful factor, followed by regional and cultural forces. Thirdly, the three factors show different effects on farmers’ willingness to pay from different income groups, i.e., villagers with poorer infrastructure and lower clarity of homestead policy systems tend to be against the reform, whereas farmers with strong urban identity and collective pride support it. Based on these findings, efforts should be made to increase the publicity of Paid Use of Residential Land. Moreover, we should clarify the reform policies, accelerate the development of the online payment platform, use the funds for village infrastructure improvements, and advocate for care-based fee measures for disadvantaged groups.

Funder

Major Project of Sichuan Province Social Science Planning Base

Social Science Fund of Sichuan Province

2023 Sichuan Provincial Science and Technology Activity Program for Returned Scholars from Overseas

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3