The Oasisization Process Promotes the Transformation of Soil Organic Carbon into Soil Inorganic Carbon

Author:

Tang Junhu12,Gong Lu12,Ma Xinyu12,Zhu Haiqiang12,Ding Zhaolong12,Luo Yan12ORCID,Zhang Han12

Affiliation:

1. College of Ecology and Environment, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Oasis Ecological, Ministry of Education, Urumqi 830017, China

Abstract

The dynamic fluctuations in the soil organic carbon (SOC) stock, a fundamental part of the terrestrial ecosystem’s carbon stock, are critical to preserving the global carbon balance. Oases in arid areas serve as critical interfaces between oasis ecosystems and deserts, with land use changes within these oases being key factors affecting soil organic carbon turnover. However, the response of the soil SOC-CO2-SIC (soil inorganic carbon) micro-carbon cycle to oasis processes and their underlying mechanisms remains unclear. Five land-use types in the Alar reclamation area—cotton field (CF), orchard (OR), forest land (FL), waste land (WL), and sandy land (SL)—were chosen as this study’s research subjects. Using stable carbon isotope technology, the transformation process of SOC in the varieties of land-use types from 0 to 100 cm was quantitatively analyzed. The results showed the following: (1) The SOC of diverse land-use types decreased with the increase in soil depth. There were also significant differences in SIC-δ13C values among the different land-use types. The PC(%) (0.73 g kg−1) of waste land was greatly higher than that of other land-use types (p < 0.05) (factor analysis of variance). (2) The CO2 fixation in cotton fields, orchards, forest lands, and waste land primarily originates from soil respiration, whereas, in sandy lands, it predominantly derives from atmospheric sources. (3) The redundancy analysis (RDA) results display that the primary influencing factors in the transfer of SOC to SIC are soil water content, pH, and microbial biomass carbon. Our research demonstrates that changes in land use patterns, as influenced by oasis processes, exert a significant impact on the conversion from SOC to SIC. This finding holds substantial significance for ecological land use management practices and carbon sequestration predictions in arid regions, particularly in the context of climate change.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3